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Abstract 

The cause of the tropospheric biennial oscillation (TBO) in a simple coupled ocean-
atmosphere model is examined.  The model is first reduced to a pair of coupled linear first-order 
differential equations, piecewise in time, for analysis.  It is found that two ingredients are 
essential for the biennial oscillation in the model. The first ingredient is the amplification of SST 
perturbations in both the Indian Ocean and western Pacific in opposite directions during the 
northern autumn, winter and spring seasons, reflecting a positive feedback process. The second 
ingredient is the decay and change of signs of the SST anomaly in the western Pacific during the 
northern summer, representing a negative feedback process. Under such a scenario, the simple 
model exhibits a regular biennial oscillation. 

Diagnosis of the model TBO reveals that the western Pacific SST and zonal wind 
anomalies have a lagged correlation at a time scale of 2-3 months, similar to observations. Such a 
phase lag results from both remote and local ocean-atmosphere-land interaction processes. The 
remote processes involve the large-scale east-west circulation associated with anomalous 
monsoon heating, whereas the local processes include the ocean horizontal and vertical 
advection and surface wind-evaporation-SST feedback. It is concluded that the phase lag 
between the SST and wind is a result rather than a cause of the TBO. 

Oscillatory and non-oscillatory regimes of the model’s solutions are obtained with the 
tuning of key parameters within realistic ranges.  It is found that the model TBO is sensitive to 
both internal air-sea coupling coefficients and external basic state parameters. With the slight 
change of these parameters, the model may undergo a bifurcation from a TBO regime to a 
chaotic regime or an annual oscillation regime – a possible scenario for the TBO irregularity. In 
particular, with a specification of interdecadal change of the basic state wind, the model may 
undergo a continuous warming pattern in the eastern Pacific, resembling the prolonged El Nino 
condition in the early 1990s. 
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during summer, and, 

during winter. 

1. Introduction 

Long-term observational data analyses reveal that the interannual rainfall variability over 
the Asian and Australian monsoon regions has a remarkable biennial spectrum peak (e.g., Lau 
and Shen 1988). These tropospheric biennial oscillation (TBO) signals have been detected in the 
rainfall of Indonesia (Yasunari and Suppiah 1988), India (Mooley and Parthasarathy 1984, Lau 
and Yang 1996) and East Asia (Tian and Yasunari 1992, Shen and Lau 1995, Chang et al. 2000). 
As a part of the coupled system, the rainfall TBO is associated with the variations in large-scale 
tropospheric circulation and tropical sea surface temperature (SST) patterns (Rasmusson and 
Carpenter 1982, Meehl 1987, Yasunari 1990, Ropelewski et al. 1992). 

The observational discoveries have led to further theoretical understanding in terms of 
what causes the TBO. Air-sea interaction over the equatorial basins has been thought to be a key 
ingredient for the TBO. So far there have been various attempts to model the biennial oscillation 
by considering atmosphere-ocean feedbacks within the tropics.  First, Brier (1978) used state 
diagrams to demonstrate that a biennial oscillation can be achieved when a negative feedback 
between the atmosphere and the ocean is considered. Next, Nicholls (1978, 1979, 1984) 
simulated a TBO with a pair of first-order linear differential equations (one for the atmosphere 
and the other for ocean) in which the atmospheric pressure (wind) anomaly has an opposite 
impact on the SST anomaly (SSTA) during winter and summer, owing to the seasonal cycle of 
the basic state wind. Based on schematic arguments (with addition of the long-lasted ocean 
memory assumption), Meehl (1987) (hereafter, M87) gave a qualitative account of how a local 
negative air-sea feedback (feedback that involves local surface wind, evaporation, and ocean 
mixing processes) can lead, in the course of seasonal progression of maximum convection, to a 
biennial oscillation.   

Recently, Clarke et al. (1998) (hereafter, C98) disputed the M87 seasonal maximum 
convection progression hypothesis by arguing that the peak phase of convection/wind associated 
with TBO is not in agreement with its seasonal maximum. Following the original idea of 
Nicholls (1978), they constructed a thermodynamic SST equation with the surface wind-
evaporation feedback as a core process and a specification of seasonally varying basic state 
winds. The key difference is that in the C98 model, the atmospheric differential equation is 
replaced with a time lag relationship between the anomalous wind and SST. The argument given 
is that the atmosphere responds rapidly to the ocean surface temperature and hence is better 
modeled with a time lag of 1-3 months than with a time-differential relation (which would imply 
a 6-month phase lag for a 2-yr oscillation period). The resulting equation is essentially a delayed 
differential equation of the form 
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where t is time, T the anomalous sea surface temperature over an equatorial basin, and ∆ the time 
lag.  Coefficient k varies with the annual cycle state of the zonal wind and is positive for one half 
of the year and negative the other.  In a simplified mathematics notation, that would be 
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In a similar way, one may model the M87 local negative feedback mechanism 
quantitatively with equation (1.1), by letting the coefficient k be zero for the whole year, except 
during the annual maximum convection: 
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The common thread that runs through these models is that they are all local, i.e. the 
dynamics for the biennial oscillation are all confined in a single basin/region, and there is only 
one first-order differential equation. Under this property, the presence of the time delay, ∆, in the 
differential equation (1.1) is essential for obtaining an oscillation solution.  The annual cycle in 
coefficient k, both in the C98 model (1.2) and our proposed M87 local feedback model (1.3), 
serves to give exactly a 2-yr period. 

In the delay oscillator ENSO theory (Suarez and Schopf 1988, Battisti and Hirst 1989), a 
differential delay equation similar to equation (1.1) is used to model the ENSO cycle.  However, 
in that case, the sea surface temperature, T in (1.1), is that of the eastern Pacific ocean and the 
atmosphere-ocean coupling coefficient, k, is a constant of time: 

ktk −=)( .  (1.4) 

In the absence of the annual cycle in coefficient k, the solution is still oscillatory by virtue of a 
delayed term but the period will be determined by both the strength of the coupling coefficient, k, 
and the length of the time delay, ∆ (see Battisti and Hirst 1989 for a detailed mathematical 
treatment). 

The C98 and M87 TBOs as well as the El Niño delayed oscillation are illustrated in Fig. 
1 for comparison. In the El Niño model (Eqs. 1.1 and 1.4), the time delay is the property of an 
entity that has a physical manifestation.  Specifically, it represents the travelling time for an 
equatorial Rossby wave, whose maximum amplitude off the equator, to propagate westward and 
an equatorial Kelvin wave to propagate eastward along the equator. However, in the TBO 
models (Eqs. 1.1, 1.2 and 1.3) there are no known physical objects for association and hence no 
strong dynamical basis for the inclusion of a time delay.  The observed delay between local wind 
and SST shown by C98 may be, as will be shown in next section, a by-product rather than a 
cause of TBO. The existence of this difficulty together with the fact that a delay term is vital for 
oscillatory behavior when involving only single region dynamics suggests that the fundamental 
cause for a TBO cycle may likely include the dynamics of and interactions between more than 
one region, an idea initially explored by M87. 

One important observational characteristic of atmospheric convection associated with the 
TBO over the Asian-Australian monsoon region is that it exhibits a distinctive spatial structure 
and seasonality (Meehl 1987, 1994). Anomalies in convection represented by outgoing longwave 
radiation start over the Indian monsoon region during the northern summer and propagate 
southwestward and reach to the Australian monsoon region in the subsequent northern winter. 
That is, the phase of TBO persists, and a strong Australian monsoon frequently follows a strong 
Indian monsoon. Such spatial and seasonal characteristics of TBO are not addressed by the local 
air-sea feedback mechanisms proposed by M87 and C98. It may require remote air-sea-land 
interaction processes, processes that involve the Asian-Australian monsoon, large-scale east-west 
circulation, and tropical Pacific and Indian oceans. M87 also proposed a remote forcing 

during maximum convection, and, 

rest of the year. 
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mechanism. The key ingredient is that the SSTA in the eastern Pacific induces an anomalous 
east-west circulation that further changes the strength of the South Asian monsoon. From a 
different perspective, Chang and Li (2000, hereafter CL00) emphasized the role of the monsoon 
in changing the east-west circulation and eastern Pacific SST, not the other way around. They 
argued that a small cold SSTA (order of -1°K, Ropelewski et al. 1992) in the eastern Pacific cold 
tongue is much less likely to play a role in pulling air mass out of the Asian monsoon region 
through the east-west circulation. To demonstrate the active role of the Asian-Australian 
monsoon on a TBO cycle, they developed a 5-box coupled ocean-atmosphere model that allows 
interactions among the South Asian and Australian monsoon regions and the equatorial Indian, 
western and eastern Pacific Oceans. The essential physical processes in the CL00 model include 
the monsoon induced large-scale east-west circulation, SST-monsoon feedback, Walker cells 
over the equatorial Indian and Pacific oceans, wind-evaporation-SST feedback, and ocean 
thermocline variation in the Pacific. The model is capable, without a priori specification of time 
delays, of simulating not only a biennial oscillation but also the phase relation between South 
Asian and Australian monsoons. 

The objective of this study is twofold. First we pursue the analytical solution of the CL00 
model by simplifying the model into a pair of homogeneous first-order differential equations, 
which are piecewise in time. The simplified model is then analyzed using linear differential 
calculus to explain the fundamental cause of TBO, from both mathematical and physical points 
of view. Second, we examine the sensitivity of the model solution to both internal coupling 
coefficients and external basic state parameters in an attempt to understand the possible 
mechanisms that cause the irregularity of TBO. 

2. Analysis of the 5-box model 

The dynamic framework of the current model is intended to be similar to the CL00 
model. Along the equator the ocean is divided into three regions (see Fig. 2), representing the 
equatorial Indian Ocean, western Pacific, and eastern Pacific, respectively. The rates of time 
change of the Indian Ocean and western Pacific SST anomalies are given by  
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where U and w denote the surface zonal wind and ocean vertical velocity at the base of the mixed 
layer, respectively, ∆q denotes air-sea specific humidity difference, )( xT  and )( zT  represent zonal 
and vertical ocean temperature gradients, and subscripts I, W and C stand for the equatorial 
Indian Ocean, western and central Pacific, respectively. An over bar denotes the annual-mean 
basic state variable. In this simple dynamic system, the time tendency of SSTA in the equatorial 
Indian Ocean and western Pacific depends on various dynamic and thermodynamic processes 
including horizontal and vertical temperature advection and surface wind-evaporation feedback. 
Table 1 lists the meaning and value of the model key parameters. 
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Following CL00, the surface zonal winds over the equatorial Indian and Pacific oceans 
are determined by convective heating anomalies over the Indian and Australian monsoon regions 
(which in turn depends on anomalous low-level moisture convergence) and SST-dependent 
eastern and western Walker cells. Thus the surface zonal winds, U, are given by  
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where ET  denotes SSTA in the eastern Pacific, and interactive coefficients ci, i=1,7 are 
determined based on a scaling analysis (see CL00 for a detailed derivation). The seasonal switch 
coefficients for India and Australia monsoon, δI and δA, are zero the whole year except in the 
northern summer and winter, respectively, when they take on the value of unity: 
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To simplify the system for analysis, we approximated the eastern Pacific SST anomaly 
with the western Pacific SSTA: 

WE TT ⋅−= 2 . (2.4) 

This treatment of the eastern and western Pacific SSTA as a seesaw is supported by the 
observational study by Lau and Yang (1996), who found that the amplitude of SST anomaly in 
the western Pacific on the biennial scale is about half of the eastern Pacific counterpart, with a 
reversed sign. It is also supported by the numerical solutions of CL00 in which a full eastern 
Pacific SSTA equation was considered. It follows that to the first order of approximation, the 
eastern Pacific SSTA may be regarded as a passive player in the TBO cycle. 

Finally, by substituting Eqs. (2.2) and (2.4) into (2.1) with the specification of standard 
parameter values (listed in Appendix A), we derived a pair of homogeneous first order 
differential equations that is piecewise in time: 
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The solution for the differential pair equation (2.5) is not only oscillatory but also has a 
biennial period. It is in full agreement with the numerical integration of the original 5-box model 
of CL00.  Figure 3a shows this model solution. In comparing this system to the C98 and M87 
models, we have avoided the difficulty of the inclusion of the delayed term by having instead an 
additional linear differential equation for a second ocean basin and physical connection between 
them, thus forming a pair of linear differential equations.   
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To check whether or not in the simple dynamic system (2.5) there is a lagged correlation 
between local SST and wind, we compute the correlation between the model’s western Pacific 
surface wind anomaly and SSTA, and find that indeed there is a positive peak correlation at a 
lagged time of 2–3 months (Fig. 3b), a result similar to that calculated from observations by C98. 
This suggests that the observed lag between the local SST and surface wind could be more of a 
result than a cause for the TBO, in contradiction to the previous TBO models such as C98. The 
reason to cause such a delay is that the SST in the western equatorial Pacific is impacted by not 
only the local air-sea interaction processes such as ocean advection and evaporation-wind 
feedback but also the remote forcing of anomalous South Asian monsoon via large-scale east-
west circulation. Thus, it is both the remote and local impacts that cause the phase lag. Such a 
lag, however, results from interactions among different regions, not from the local dynamic 
structure as argued by C98. 

The simplified model (2.5) is a pair of homogeneous first-order differential equation that 
is quasi-nonlinear in the sense that the anomalous monsoon heating coefficients, δI and δA, 
change with season. To demonstrate the relative importance of each season and the associated 
physical processes in producing the TBO, we further derive three pairs of equations, one for each 
season (because spring and autumn have the same coefficients), in the following form: 
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The solution of (2.5) can be obtained from the solutions of (2.6) for each season, joined in time, 
where the initial values of each seasonal equations are equal to the final values of the previous 
season solutions.  A complete analytical treatment of linear system of first order differential 
equation (2.6) can be found in mathematical texts (e.g. see Grossman and Derrick 1988) and a 
summary, relevant to this work, is given in Appendix A.  In this section, we will make use of the 
results in Appendix A [where TI corresponds to x(t) and TW to y(t) ] to analyze the simple 
dynamic system (2.5), whose seasonal coefficients are given in Table 2. 

 

Table 2.  The coefficients for the simplified TBO model for different seasons. 

Seasons a b c d 

Winter -3.15 -4.06 0 12.87 

Spring -3.15 -4.06 0 0.27 

Summer -13.04 -4.06 13.34 0.27 

Autumn -3.15 -4.06 0 0.27 

 

The seasonal values of the coefficients of the simplified coupled model are plotted on the 
regime diagram in Fig. 4. (A complete description of the regimes of the linear system can be 
found in Appendix A.)  The model is in the saddle point regime (the middle graph of Fig. A1) 
during spring, autumn and winter, and in the stable focus regime (the left graph of Fig. A2) 
during summer. To explain the biennial oscillation observed in the numerical evolution of the 
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simple dynamic system (2.5), it is necessary to examine analytically the behavior of the model in 
each season, particularly in the winter and summer periods. 

During winter, we observe a few relationships among the coefficients in Table 2:  
coefficient b is negative, coefficient c is zero, and coefficient d is greater than coefficient a.  The 
reason that coefficient c is null is that in this simplified coupled model, the Indian Ocean SST 
does not affect that of the western Pacific during spring, autumn, and in particular winter.  From 
Eqs. (A.7a) and (A.9a), the asymptote G+ and G– must take on the values of the second pair in 
Eq. (A.10) because λ+ = d and λ– = a.  Hence, asymptote G– has a zero gradient while asymptote 
G+ has a negative gradient.  The implication of this result is that when TW is negative (positive), 
it will continue to be more negative (positive) while TI will either be flipped over from negative 
(positive) to positive (negative) or continue to be positive (negative) if it were already in the 
positive (negative) phase.  This can be seen in the phase diagram (Fig. 5) of the model during 
winter.  Note from Fig. 5 that there is reinforcement for the SSTA in the western Pacific and 
Indian Ocean. Hence, it can be concluded that during the winter season, the western Pacific 
SSTA dominates the SSTA in the Indian Ocean, forcing the latter to be in opposite phase with it.  
In autumn and spring, the same analysis and conclusion apply. 

The physical reason for this is that the strength of the anomalous Walker cell over the 
Indian Ocean is primarily determined by the SSTA over the western Pacific/maritime continents. 
A warmer SSTA in the western Pacific would cause a stronger western branch of the Walker cell 
that further cools the Indian Ocean through surface evaporation processes (because the annual 
mean zonal wind is westerly over the equatorial Indian Ocean). The change of SST in the Indian 
Ocean, on the other hand, may influence the western Pacific ocean in summer through the 
change of the South Asian monsoon and the associated large-scale east-west circulation.  

We thus have the first ingredient for oscillation of the simple coupled system: the 
amplification of SST perturbations in both the Indian Ocean and the western Pacific in opposite 
directions.  A second ingredient critical for the oscillation is that the SST anomalies must 
decrease in magnitude and change in sign before the next winter.  This leads to further analysis 
of the model's summer behavior. 

In summer, the simple coupled model is in stable focus regime and the orbit representing 
both the SST anomalies in Indian Ocean and western Pacific spirals towards the origin 
(equilibrium point) and changes sign in its course.  Thus, we have the second ingredient for 
oscillation—the decrease of the SSTA in the western Pacific and its change of sign.  Such an 
oscillatory behavior would not be possible if the model is in the stable node regime during 
summer, where its values decrease and approach zero without any change in sign. 

The resultant piecewise solution for the simple coupled model is shown in Fig. 6. It 
reflects the phase diagram of the time series solution illustrated in Fig. 3a. 

As the growth, decay, and the crossing of zero line of the SSTA in the western Pacific 
happen in a chronological order in a single year, with the Indian Ocean SSTA in an opposite 
phase, the model takes exactly two years to perform a full cycle.  Therefore the model simulates 
the biennial oscillation of the SST anomalies. A key element for the oscillation is the change of 
time tendency and sign of the SST anomalies in the summer season. The growth of the SSTA 
during winter and decay during summer in this simple dynamic system agrees with the 
conclusion of Webster et al. (1998) that the TBO has strong seasonality with the maximum-
amplitude phase in winter and the node phase in summer.  
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3. Irregularity of TBO 

We have shown that the simple dynamic system (2.5) exhibits a regular biennial 
oscillation under a realistic parameter regime. However, in reality, the TBO is far from regular. 
In this section, we shall examine the sensitivity of the model solution to some of the model key 
parameters in order to understand possible mechanisms that cause the irregularity of TBO. 

3.1 Sensitivity to internal parameters 

For this analysis, we choose two important internal parameters that are crucial to this 
model: the air-sea coupling coefficient, α, and the SST-thermocline feedback coefficient, γ.  The 
former links the surface wind stress with the oceanic current, while the latter connects the 
thermocline displacement with the change of subsurface ocean temperature (which may further 
feedback to SSTA through anomalous vertical temperature advection). 

The model (2.5) is rewritten to explicitly include the air-sea coupling coefficient, α, and 
the SST-thermocline coefficient, γ, as parameters.  An ensemble of solutions is obtained by 
varying, in steps, α from 6×103 to 13×103 kg m-2 s-1 and γ from 0.12 to 0.22 K m-1.  The 
frequency and growth rate of each time series solution are then calculated based on a least square 
method, with the specification of the following mathematical formula: 

)exp()cos()( 00 ttYtY ⋅−⋅−⋅= σδω , where ω  denotes the frequency, σ the growth rate, Y0 the 
amplitude, and δ0  the initial phase. 

Figure 7 clearly demonstrates that with the changes of internal coupling coefficients, the 
simple dynamic system undertakes different regimes, for instance, from an unstable to a stable 
TBO regime or from a TBO regime to a chaotic regime or a non-TBO (annual oscillation) 
regime. Thus this sensitivity experiment demonstrates that both processes are critical for 
obtaining the TBO. On the lower left-hand corner, where air-sea coupling is relatively weak, the 
model exhibits a non-biennial oscillatory behavior, with a period of one year (Fig. 8a). In the 
middle, solutions are much more irregular, exhibiting a chaotic oscillation regime (Fig. 8b). The 
stable and growing biennial oscillatory behavior is on the upper right-hand corner where both the 
air-sea coupling and the SST-thermocline feedback coefficients are sufficiently high (Fig. 8c). 

A lower bound (i.e., a necessary condition) for the biennial oscillatory behavior can be 
derived analytically by considering the model’s summer regime in Fig. 4.  As stated previously, 
one of the criteria for oscillation is that during summer, the model must be in the stable focus 
regime.  This means that the summer parameter point must be beneath the focus regime 
boundary curve (see Fig. 4).  Therefore characteristic equation (A.7) in Appendix A must have 
imaginary roots: 

0)(4)( 2 <⋅−⋅⋅−+ cbdada . (3.1) 

Substituting (3.1) with the standard parameters in summer, we have a quadratic equation 
for γ as the left-hand side of the condition: 

01045010206127)1014910127(10443 222243224 <⋅⋅−⋅⋅++⋅⋅⋅+⋅⋅−+⋅⋅⋅ ααγααγα
 (3.2) 

Since α is of the order of 10-3 kg m-2 s-1, we can expand α into a power series and retain the first 
two terms without any lost of significant digits: 
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Thus the necessary condition for the biennial oscillation would be 
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Since the second condition in (3.4) is always satisfied in the real world, the first condition 
represents a lower limit for the biennial oscillation. In other words, it is a necessary (but not 
sufficient) condition for the TBO to occur. This condition is demarcated by a thick dashed line in 
Fig. 7. It implies that the TBO regime must appear above the line. 

In addition to α and γ, the model is also sensitive to other internal parameters such as the 
atmospheric Rayleigh friction coefficient, ε, and the depth of the ocean mixed layer, h, as shown 
in Fig. 9. With the slight change of these parameters, the model solution can shift from a TBO to 
a non-TBO regime or from an oscillation to a chaotic regime, leading to the irregularity of the 
TBO. It is also noted that a common feature from those sensitivity experiments is that the model 
always undergoes a rapid decay during the chaotic transition from a regular TBO mode to a non-
TBO mode or vise versa. 

3.2 Sensitivity to basic-state changes 

In the previous section, we have shown that the model may switch from an oscillatory to 
a non-oscillatory mode or from a TBO mode to annual oscillation mode with the change of 
internal parameters. Specifically, when the summer parameter point in Fig. 4 shifts from a stable 
focus regime into a stable node regime, biennial oscillation is not possible. In this section we 
further examine the sensitivity of model solution to external parameters such as the basic state of 
the coupled ocean-atmosphere system. 

Figure 10 illustrates the model oscillation regimes under different basic state parameter 
values for the zonal wind over the Indian Ocean and the upper-ocean vertical temperature 
gradient in the western Pacific. Note that the model solution is very sensitive to the external 
parameters. With a small change of these basic state parameters, the model may undertake a 
bifurcation from a TBO mode to a chaotic regime or to a non-TBO (annual oscillation) regime. 

The sensitivity of the model oscillatory behavior to both the basic state and internal 
parameters poses an interesting question: are they the causes of irregularity of TBO? As these 
parameters represent the measure of dynamical processes of the complex physical world, they 
may change from time to time. For instance, the interactions with other tropical systems such as 
the Madden-Julian Oscillation (MJO) and ENSO may interrupt or break the regular cycle of a 
TBO by changing the sign of SSTA either in the Indian Ocean or the western Pacific from a 
positive (negative) to a negative (positive) anomaly. Furthermore, in a stable (or decayed) TBO 
regime, a biennial oscillation may not be well self-sustained. In this case, atmospheric motion 
associated with random synoptic-scale disturbance may trigger or initiate a TBO cycle. All these 
circumstances are possible scenarios to cause the irregularity of the TBO. 

One fascinating observational fact is the prolonged El Nino warming in the Pacific during 
the early 1990s. The duration of this prolonged warming is about 5-6 years, exceeding the period 
of all past recorded ENSO events. Gu and Philander (1997) suggested that tropical-midlatitude 
exchange through ocean subduction might be responsible for this prolonged warming. Here we 
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propose that the persistent warming may result from the bifurcation of the TBO mode under a 
slowly evolving interdecadal basic state. It is well known that tropical SSTs and winds undertake 
a significant interdecadal change (Trenberth 1990, Wang 1995, Zhang et al. 1997). Such an 
interdecadal basic state change may lead to a transition from a regular TBO regime to a 
“permanent” El Nino stage. To demonstrate this possibility, we specify a slowly evolving (with 
an oscillation period of 15 years) interdecadal basic state zonal wind at the equator. The 
amplitude of this interdecadal wind is 1 m/s, based on an observational analysis by Chang et al. 
(2000). Figure 11 shows the time series of the simulated eastern Pacific SSTA in this case. The 
interdecadal change of the basic state wind indeed causes a bifurcation from a regular TBO mode 
to a prolonged warming stage in the equatorial eastern Pacific, resembling to some extent the 
observed phenomenon. 

4.  Conclusion and discussion 

A time-piecewise linear coupled ocean-atmosphere model is derived based on the 
previous 5-box model of Chang and Li (2000). For given standard parameter values (listed in 
Appendix A), the model exhibits a regular biennial oscillation.  The model is then analyzed using 
linear differential calculus to explain the cause of the TBO.  It is found that two ingredients are 
essential for oscillation in the current model: 1) the amplification of SST perturbations in both 
the Indian Ocean and the western Pacific in opposite directions during the northern winter; and 
2) the SST anomalies must decrease in magnitude and change in sign in the northern summer. 
Under such a scenario, the model TBO exhibits a characteristic spatial pattern and seasonal 
progression, with a strong Australian monsoon following a strong South Asian monsoon. 

Analogous to the El Nino delayed action oscillator that depends on equatorial oceanic 
wave propagation, the current TBO monsoon oscillator depends on remote and local ocean-
atmosphere interactions in the Asian-Australian monsoon region and the equatorial Indian Ocean 
and western Pacific. On one hand, the annual cycle of the Asian-Australian monsoon, as a 
pacemaker, strongly regulates the TBO mode, so that the biennial oscillation is phase-locking 
into the seasonal cycle. On the other hand, the feedbacks between the Indian Ocean SSTA and 
the monsoon, between the surface wind and evaporation, and between the wind stress and ocean 
thermocline contribute to the year-to-year variation of the coupled air-sea modes. Among various 
air-sea interaction processes, the impact of the Asian monsoon on the Pacific SSTA through 
large-scale east-west circulation and the influence of the western Pacific/maritime continent 
SSTA on the strength of the western branch of the Walker cell over the Indian Ocean are most 
critical. It is suggested that the origin of the TBO may arise from ocean-atmosphere interactions 
within the monsoon sector in the tropics. 

The possible influence of midlatitude circulation on the tropical biennial oscillation has 
been proposed by Meehl (1997) based on the diagnosis of output of a coupled ocean-atmosphere 
model. The key element of this proposed mechanism is the linkage between anomalous tropical 
heating and midlatitude circulation patterns. However, such a linkage is beyond the scope of the 
current study. It deserves further observational analyses. 

An essential difference between the current 5-box model and previous conceptual TBO 
models such as those discussed in the first section is that the current model considers the 
interactions among multiple regions whereas the previous models considered only local air-sea 
interaction processes. Because of locality, some forms of time delay between atmosphere (such 
as surface wind) and ocean (SST) are required (see discussions in section 1), in order to obtain an 
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oscillatory solution. As shown by this study, such a constraint is neither dynamically consistent 
nor necessary. The time delay between the surface wind and SST in the western Pacific as 
observed by C98 is a result rather than a cause of TBO. It results from both remote and local 
ocean-atmosphere interactions, interactions that involve the Asian-Australian monsoon and 
associated large-scale east-west circulation, evaporation-wind-SST feedback, and subsurface 
ocean temperature changes.  

The sensitivity analysis of the current model reveals that the model solution is sensitive to 
changes in both internal parameters such as air-sea coupling and atmospheric friction coefficients 
and external parameters such as the basic state zonal wind and upper-ocean vertical temperature 
gradient. It is found that a necessary condition for the model to be in the TBO regime is that two 
crucial air-sea coupling coefficients, reflecting the surface wind-ocean current and the subsurface 
temperature-ocean thermocline relations, must be sufficiently large and within reasonable ranges.  
With the small change of both the internal and external parameters, the model may undergo a 
bifurcation from a regular TBO regime to a non-TBO (either chaotic or annual oscillation) 
regime. When the basic state varies slowly on the interdecadal time scale, the model SST 
experiences a continuous warming pattern, similar to the prolonged warm episode in the 
equatorial Pacific during early 1990s. However, it is important to note that the observed behavior 
in the early 1990s is unique for the last century whereas the low-frequency fluctuation of the 
wind might be ubiquitous throughout the record. This implies that there are likely other factors 
that may contribute to this unique feature. It is anticipated that the complex behavior of the 
observed TBO may arise from its interactions with motions at other scales such as MJO, ENSO, 
or synoptic-scale disturbances. These interactions may alter the model oscillation regimes and 
give rise to the irregular oscillation behavior of the TBO.  
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Appendix A: Analytical solution for linear homogeneous first-order differential equations 

In its most general form, a linear system of homogeneous first-order differential 
equations represented by 

)()( tt
t

TMT ⋅=
∂
∂

, (A.1) 

where T(t) is the vector of variables of concern and M is the matrix of constant coefficients, has 
a solution 

)()exp()( 0ttt TMT ⋅⋅=  (A.2) 

where t0 is the time of the initial conditions and exp() is the matrix exponential function 

K+⋅+⋅+⋅+=⋅ 3
3

2
2

!3!2
)exp( MMMIM

tt
tt . (A.3) 

It is a general property that for real t and n-by-n square matrix M, the series (A.3) is convergent. 

In the following discussion, we consider the solution of two independent variables initial 
value problems and its orbits in phase space.  (A.1) is then  

ydxc
t
y

ybxa
t
x

⋅+⋅=
∂
∂

⋅+⋅=
∂
∂

. (A.4) 

The linear systems of differential equations with initial values lend themselves particularly well 
to Laplace transform techniques. The Laplace transformation of (A.4) is 

ydXcyYs
ybXaxXs

⋅+⋅=−⋅
⋅+⋅=−⋅

0

0  (A.5) 

where s, X, and Y are the Laplace transform of t, x, and y; x0 and y0 are the initial values of x and 
y at time t0.  The solution of (A.5) is 

)()(
)(

)()(
)(

2
00

2
00

cbdasdas
yasxc

Y

cbdasdas
ybxds

X

⋅−⋅+⋅+−
−+⋅

=

⋅−⋅+⋅+−
⋅+−

=
 . (A.6) 

If we define λ+, λ– (incidentally, they are also the eigenvalues of M in A.1) to be the roots of the 
characteristic equations 

0)()(2 =−+⋅+− bcadda λλ  , (A.7) 

or equivalently,  

cbda ⋅=−− ))(( λλ  ,     (A.7a) 

then it plainly appears that (A.6) can be written as 
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Considering only the solution of the general non-degenerate linear system (i.e. λ+ ≠ λ–), the 
inverse Laplace transform of (A.8) is 
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This is the general non-degenerate solution for (A.4).  It is illuminating to examine solutions 
(A.9) in the phase space and we shall consider separately the cases where the roots of (A.7) are 
real and complex. 

Case of real roots, )(4)( 2 cbdada ⋅−⋅≥+ : 

The phase space diagram of (A.9) can be obtained by first looking at the asymptotes as 
time tends to infinity and as time originates from minus infinity.  Assume, without a loss of 
generality,  

λ+ > λ–.   (A.9a) 

From (A.9), we see that the asymptote gradients, G+ and G–, 
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Using (A.7a), (A.10) can be reduced, respectively, to 
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,          (A.11) 

If both λ+, λ– are negative, then from (A.9), it is plain that both y(t) and x(t) will tend to 
infinity with time and to zero with reverse time (i.e. t→ –∞), resulting in a stable node (Fig. A1).  
On the other hand, if both λ+, λ– are positive, then the solutions tend to zero with time and to 
infinity with reverse time, forming an unstable node.  If the eigenvalues are of opposite signs, 
then the solutions tend to infinity with both time and its reversal, having a saddle point for the 
origin. 

Case of complex roots, )(4)( 2 cbdada ⋅−⋅<+ : 

if (λ+ ≠ d) and (λ– ≠ a), or

if (λ+ ≠ a) and (λ– ≠ d). 
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If the eigenvalues are complex, then we can substitute βαλ i±=−+, into (A.9) giving 
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.  (A.12) 

If α is negative, then from (A.11) the solution tends to zero, and its origin is a stable 
focus (Fig. A2).  If, however, α is greater than zero, the solutions tend to infinity, forming an 
unstable focus.  For α = 0, the solutions are periodic and the origin is a center point. 

The dependence of the solution type on the roots of the characteristic equation (A.9), and 
hence on the coefficients a, b, c, and d, is given in Fig. A3.  The dividing curve between the foci 
and the nodes are given by the equation (a+d)² – 4(ad–bc) = 0, while the regime for the center 
point solutions is the positive horizontal axis. 
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 Table 1: The list of key parameters of the coupled model 

Parameters  Value 

Ocean thermocline mean depth H 150 m 

Ocean mixed layer mean depth h 50 m 

Reduced gravity  g’ 0.015 m s-2 

SST-thermocline feedback coefficient γ 0.18 K m-1 

SST-specific humidity constant κ 7×10-4 K-1 

Rayleigh atmospheric friction coefficient ε 1×10-5 s-1 

Oceanic Ekman layer friction coefficient r 1×10-5 s-1 

Air-sea humidity difference q∆  5.6×10-3 

Half length of Pacific basin LEW 8×106 m 

Indian Ocean annual mean zonal wind speed 
IU  3 m s-1 

Western Pacific annual mean zonal wind speed 
WU  0 m s-1 

Mean constant surface wind speed V0 4 m s-1 

Indian Ocean mean upwelling speed 
IW  2×10-6 m s-1 

Western Pacific Ocean mean upwelling speed 
WW  2×10-6 m s-1 

Indian Ocean mean zonal temperature gradient )(x
IT  2×10-7 K m-1 

Central Pacific mean zonal temperature gradient )(x
CT  -5×10-7 K m-1 

Indian Ocean mean vertical temperature gradient )(z
IT  1×10-2 K m-1 

West Pacific mean vertical temperature gradient )(z
WT  1×10-2 K m-1 

Air-sea coupling coefficient α 9.6×10-3 kg m-2 s-1 

Wind-evaporation feedback coefficient λ 2.1×10-5 K m-1  

Interactive coefficient c1 4.0 m s-1 K-1 

Interactive coefficient c2 1.6 m s-1 K-1 

Interactive coefficient c3 4.0 m s-1 K-1 

Interactive coefficient c4 4.2 m s-1 K-1 

Interactive coefficient c5 3.0 m s-1 K-1 

Interactive coefficient c6 4.2 m s-1 K-1 

Interactive coefficient c7 0.3 m s-1 K-1 
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Table 2.  The coefficients for the simplified TBO model for different seasons. 
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Fig. 1.  Time series of SST anomalies associated with C98’s TBO (Eqs. 1.1-1.2), M87’s TBO (Eqs. 1.1-1.3), and 
El Nino delayed oscillation (Eqs. 1.1-1.4). 

Fig. 2. Schematic diagram of the 5-box model of Chang and Li (2000). 
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Fig. 3. (a) The simulated TBO in the simplified dynamic model (Eq. 2.5); (b) the lagged correlation between the 
western Pacific SST and zonal wind anomalies. 
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Fig. 4. The regime diagram for the simple coupled model and the standard parameter regime for the northern 
spring, summer, autumn and winter. 

Fig. 5. The phase diagram of the Indian Ocean and western Pacific SST anomalies for the northern winter. 
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Fig. 6.  The phase diagram of the simple coupled model during a TBO cycle. 

Fig. 7. Dependence of the model oscillation regime on the air-sea coupling coefficient, α, and the SST-
thermocline feedback coefficient, γ. 
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Fig. 8. Time series of the model SSTA (solid line: western Pacific, dashed line: Indian Ocean) in (a) a non-TBO 
(annual oscillation) regime (α =13.4×10-3 kg m-2 s-1 and γ =0.12 K m-1), (b) a chaotic regime (α =9.1×10-3 kg m-2 s-1 
and γ =0.1785 K m-1), and (c) a TBO regime (α =8×10-3 kg m-2 s-1 and γ =0.2075 K m-1). 
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(a) 

(b) 

Fig. 9. Dependence of the growth rate and oscillation period on (a) atmospheric Rayleigh friction 
coefficient and (b) the ocean mixed layer depth. 
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Fig. 10. Dependence of the model oscillation regime on the western Pacific mean vertical temperature gradient, 
)(z

WT  and Indian Ocean mean surface wind speed, IU . 

Fig. 11. Temporal evolution of the eastern equatorial Pacific SSTA undergoing a bifurcation from a regular TBO 
mode to an abnormal mode resembling the prolonged warming episode during the early 1900s. A slowly evolving 
interdecadal (with a 15-yr period) basic state wind is specified. 
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Fig. A1. The phase diagrams for real eigenvalue cases (long dashed line: asymptote G+ ; short dashed line: 
asymptote G–). 

Fig. A2. The phase diagrams for complex eigenvalue cases. 
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Fig. A3. The regime diagram for the linear differential equation system. 


